Chaotic Dynamical Systems

Michael Grantham Mentor: James O'Quinn

Texas A&M University

23 November 2020

Talk Outline

- Dynamical Systems Background
- Hyperbolicity
- The Schwarzian Derivative
- Chaotic Systems
- Bifurcation

Motivation

- Imagine you want to model the population of some species.
- Have some function f(x) where x is the current population.
- Then for time n, $f^n(x) = f \circ f \circ \cdots \circ f(x)$.
- This is a Dynamical System.

Definition

A **Dynamical System**, (X, T) is comprised of a space X and some function/map T on X.

Logistic Map

The **Logistic Map**, $F_{\mu} = \mu x (1-x)$ is dynamical system on \mathbb{R} . One of its applications is population modeling.

Dynamical Systems

Definition

The **orbit** of a point is the path it takes through it's iterations, $\{f^n(x) \mid n \in 0, 1, 2, ...\}$

Definition

A point is a **fixed point** if for f, f(x) = x. If for some n, $f^n(x) = x$ then x is a **periodic point** of period n

Dynamical Systems

Definition

Let p be a periodic point of period n. A point x is **forward asymptotic** to p if $\lim_{i\to\infty} f^{in}(x) = p$.

Definition

The **stable set**, $W_s(p)$, consists of all points which are forward asymptotic to p.

Example

For F_2 , all points on the unit interval are forward asymptotic to 1/2, Therefore the stable set is: $W_s(1/2) = (0,1)$

Hyperbolicity

Definition

Let p be a perioidc point of period n. The point p is **hyperbolic** if $|(f^n)'(p)| \neq 1$.

Definition

Let p be a hyperbolic point of period p. If $|(f^n)'(p)| < 1$ then p is an attractor (attracting fixed point, or a sink).

Definition

Let p be a fixed point. If |f'(p)| > 1 then p is a **repellor** (repelling fixed point, or source).

Hyperbolicity

Example: Take $F_{\mu}, \ \mu = 2$ as before. x = 1/2 is a hyperbolic attractor.

Schwarzian Derivative

Definition

The **Schwarzian Derivative** of a function f is

$$Sf(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2$$

Theorem

If Sf < 0 and f has n critical points. Then f has at most n+2 attracting periodic orbits.

Schwarzian Derivative

Intuition

- A bounded stable set must have a critical point.
- There are at most 2 unbounded stable sets.
- Therefore the upper bound on number of stable sets, and therefore attracting points, is n + 2.

$$(\leftarrow \cancel{\parallel} \bullet \cancel{\parallel} \bullet \cancel{\parallel} \bullet \cancel{\parallel} \longrightarrow)$$

Chaos

- Topological transitivity
 - For some $f: J \to J$ if any pair of open sets $U, V \subset J$, $\exists k > 0$ s.t. $f^k(U) \cap V \neq \emptyset$.
 - This is equivalent to having a dense orbit.
- Sensitivity to initial conditions
 - $\exists \delta > 0$ s.t. $\forall x \in X$ and every open set U which contains $x \exists y \in U$ s.t. $|f^n(x) f^n(y)| > \delta$.
 - Butterfly Effect
- Dense periodic points

Chaos

Take F_{μ} with $\mu=2,4$ on the unit interval.

- F₂ is not chaotic.
 - Recall that $W_s(1/2)$ is the unit interval. Therefore sensitivity to initial conditions isn't satisfied.
 - Note: topological transitivity is not satisfied and this does not have dense periodic points either.
 - ullet This is true for all $\mu <$ 4
- F_4 is chaotic.
 - Observe visually that the shown orbit is dense.
 - Observe that for any two points their orbits get farther apart.
 - Periodic points are dense.

Bifurcation

Bifurcation Diagram of the Logistic Map by Jordan Pierce, CCO, via Wikimedia Commons

References

Devaney, Robert L. An Introduction to Chaotic Dynamical Systems. 2nd Ed. (1989).